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FLOW OF ELECTRONS THROUGH A NEUTRAL SCATTERING GAS IN A THERMIONIC DIODE
by Peter M. Sockol

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

Abstract ) \ -60 5 \

The flow of electrons through a neutral scattering gas in a thermionic diode is analyzed for
electron mean free paths comparable to the electrode separation. A perfect Lorentz gas with a
rigid sphere scattering cross section is assumed. The corresponding Boltzmann equation is trans-
formed to a pure integral equation, and self-consistent-field solutions of this equation with
Poisson's equation have been computed. Density and potential variations together with saturajion

portions of current voltage curves are presented. Zéi—;—_____-—_/

Introduction

The analysis of transport effects in a thermionic diode is complicated by the strong influ-
ence on the entire system of phenomena occurring in the immediate vicinity of the electrodes.
For large spacings this is seen in the artificial separation of the interelectrode space into
collisionless sheaths and a collision-dominated plasma. For close spacing collisions are fre-
quently ignored altogether. The method employed in the present analysis can be used to calculate
transport effects over distances of a few mean free paths with results as accurate as the know-
ledge of the collision cross sections involved.

The use of integral equation formulations in the solutlon of Boltzmann's equation is not
new. It has been suggested by Gradl;2 and used by Willis3 to solve the Krook model of the lin-
earized Boltzmann equation in shear flow. By introducing a variable transformation to deal with
the potential field, Willis' method has been adapted in this work to treat the flow of electrons.
Solutions - -have been obtained for the flow from a hot emitter to a cold collector and include the
effects of space charge and electron-neutral atom collisions.

General Analysis

For electrode separations that are not too large, the loss of energy by electrons due to
elastic collisions with atoms is negligible. 1In addition, all inelastic collisions are also
neglectzd. The Boltzmann's equation for the one-dimensional flow of a perfect Lorentz gas is
written=>

— -— . 2 -—
cos e( X o §£)+ sdeine I _wf[F@ve) - 1@T.0]0 @ (1)

b +'—'-

X ox
where §, ;, and 9 represent, respectively; distance, velocity, and polar angle in velocity
space; £ 1is the electron distribution function; V +the potential; N the atom density; and o
the differential cross section. The bars are used to distinguish dimensional quentities.

The density and current, respectively, are given by

_ o It_ -
n=2:tf f f sin 6 dov” dv (2)
0 0
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0

0

Equation (1) with (2) is to be solved simultaneously with Poisson's equation
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Boundary conditions are

where n, and T,
trode separation.

2
g:% = 4ren (4)
Y AL ~uv® /2KT_
cos 8 >0 T = 2n, ZﬂkTo e
) (s)
=L cos 6 <0 f=0
=0 v'(0) = constant

are the density and temperature of the emitted electrons and L is the elec-
The conditions on f are obtained by assuming that there is no reflection of

electrons at either electrode.

On assuming isotropic scattering and introducing dimensionless variables, Egs. (1) to (5)

become
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and the mean free path A 1is given by
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et o eV
vV=yv n = cos 6 P = =
ZkTo KTy
3/2 _ _ _
n== gL Jom =
o T =N
- .2
L
L 2 o
K = ')\ C = 4ne kTo
A = (4nNo)~1 ' (11)

In order to trensform Eq. (6) to a pure integral equation, transform variables from (x,v,u)

to (x,w,u), vhere




v =2 - g(x) (12)
12
u = 1% - ox)
In addition, denote f by £ for u 2 0, and define
f'.': = 2 e'wﬂ/i (13)
372
Then Egs. (6) to (8) become
E
s.i_’— = FRa(x)yF * % —K  s(x,w) (14)
Vu + 9(x)
n = -2 e~vs(x,w)dw (15)
Vi J-o(x)

J ='/.°o /w Yyt - v )du aw (16)
-9(x) J-9(x)
a(x) = VZ I > )’: (17)

W
S(x,w) = %/( (W) —2 (18)

with

The boundary conditions of Eq. (10) become

]
o
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X ¥y" =0 (19)
p(0) =0 9*(0) = constant

Equation (14) is formally integrated to give

X

x x x
+ 4 1 K " "
¥= = A" (w,u)exp|* Ko(x')dx'|* = ———— S(x',w)exp|* Ka(x")ax"{ax' (20)
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+
In general, K is a function of W + @(x). The quantities A~ (w,u) and x_ are to be determined
from the boundary conditions and such other conditions as particular potential configurations may
impose on the distribution function.

+
)

In order to solve for S(x,w), Eq. (20) is substituted into Eq. (18). After rearranging, a
linear integral equation is obtained in S(x,w). In many respects the theory is similar to that
of rediative transfer.® These equations are now applied to a particular case.

Rigid Sphere Scattering With a Monotonic Increasing Potential

For this case K 1is a constant and cp(x) 2 0. The complete conditions on 1|I+ are



for u> o0,
x=0 vyt =1
o (21)
X =1 “ =
for u<o0,
= _'X_t ]1[+ = \V-
=1 ¥y =0 (22)
u + @(xt) =0
The point is the turning point for electrons of "energy" u in the electric field.
Xy
Applying conditions (21) and (22) to Eq. (20) gives
for u > 0, 3
x x X
1
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After substitution of Egs. (23) and (24) into Eq. (18) and interchanging the order of the
x and u integrations, the following integral equation for S(x,w) is obtained:

1
S(x,w) = F(x,v) +% K _[ H(x,x',w)S(x',w)dx’ (25)

where

W X
F(x,w) =i/ -K/ (x")ax' | —2 (26)
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W X
H(x,x',w) = %/ exp|-K / alx")ax" du
b x! Vu +o(x) Vu + o(x")
0 b 4 x!
1 - [ "o " 1 du
+ z/b- exp K/Xt a(x")dx K/x; a(x")dx T (27)
and
-p(x') x' < x
b - (28)
{-cp(x) x' > x

Equation (25) can be solved by iteration in the form

S(O)(

x,w) = F(x,w)

(29)
(n) Y (n-1)
s\ (x,w) = F(x,w) + K H(x,x',w)S (x',w)ax’
0
Once S(x,w) has been found, the density is given by Eq. (15) as
2 [*e]
n(x) = ——/ e vs(x,w)aw (30)
VT Yo
and the current, evaluated at the emitter, by Egs. (16), (23), (24), and (26) as
00 1
J=1- Kf eV / S(x',w)P(x',w)dx' dw (31)
0 0

Note that w 2 O as each particle's total energy is conserved.

Results

Equation (25) with (30) has been solved self-consistently with Eq. (9) on the IBM 7094 com-
puter. The equations were solved for IL/A =0, 0.5, 1, 2, and 5 and C [Eq. (9)] = 50. An
emitter temperature of 1900° K, a spacing of 10p, and an emission of 10 zamp/cm2 would give a C
of about 50. Typical density and potential curves are shown in Figs. 1 and 2, while current
voltage curves are presented in Fig. 3.

Examination of the inhomogeneous function F(x,w) in Eq. (25) shows that it has an infinite
slope at x = 0. This shows up in the steep slopes of the density curves (Fig. 1) at x = O.
More accurate computation would show that these slopes are actually infinite.

The results shown in Fig. 3 agree quite closely with an independent Monte Carlo calculation
(presented in the paper by C. M. Goldstein).

The method of solution of the Boltzmann equation presented in this paper has been shown to
be an accurate and quite feasible means of analyzing transport phenomena over distances of a few
mean free paths. The same method can be used to handle ion transport phenomena and, by modifying
the boundary conditions, to treat the transition region between an electrode and a plasma.
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Fig. 1. - Density as function of distance, C = 50; &'(0) = 0.

Fig. 2. - Potential as function of distance. C = 50; ,'(0) =0,
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Fig. 3. - Current as function of anode voltage. C =50.
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